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1. State whether the following sequence converges. If no, just write ”this sequence is not convergent”.

(There is no need to give reason.) If yes, find the limit.

(a) an =
3n − 1

3n + 1
.

(b) an = (−1)n

(c) an =
√
n+ 5−

√
n

(d) an = cos
nπ

2

(e) an =
3n2

n+ 1
− 3n

(f) an = (2− 1

2n
)(3 +

2

n2
).

(g) an = (
3
√
n2 + 1− 3

√
n2)

(h) an =

[(
1− 1

22

)(
1− 1

32

)
· · ·
(

1− 1

n2

)]

2. By using the sandwich theorem, evaluate the following limits.

(a) lim
n→∞

6n+ cosn

2n

(b) lim
n→∞

2n2 + (−1)nn

n2

3. By using the sandwich theorem, prove that

lim
n→∞

(
1

n2
+

1

(n+ 1)2
+ · · ·+ 1

(2n)2

)
= 0.

(Remark: You may not use the algebraic rules of limits since when n goes to infinity, we are

summing up infinitely many terms. Hint: Try to consider
1

(2n)2
≤ 1

r2
≤ 1

n2
for all n ≤ r ≤ 2n.)

4. (a) Resolve
5x− 3

x(x+ 1)(x+ 3)
into partial fractions.

(b) Hence, evaluate

∞∑
k=1

5k − 3

k(k + 1)(k + 3)
(i.e lim

n→∞

n∑
k=1

5k − 3

k(k + 1)(k + 3)
).

5. Let {an} be a sequence of real number defined by a1 = 0 and an+1 = 2n− an for n = 1, 2, 3, · · · .

(a) By using mathematical induction, prove that for all integers n ≥ 1,

2an = 2n− 1 + (−1)n.

(b) Hence, evaluate lim
n→∞

an
n

.

6. (a) Prove that
2n

n!
≤ 4

n
for all natural numbers n ≥ 2.

(b) Hence, show that lim
n→∞

2n

n!
= 0.

7. Let {xn} be a sequence of positive real numbers defined by x1 = 2 and xn+1 = x2n − xn + 1 for all

positive integers n. Define sn =

n∑
i=1

1

xi
for all positive integers n.
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(a) Prove that for any positive integer n,

(i) xn > n,

(ii) sn = 1− 1

xn+1 − 1
.

(b) Hence, prove that lim
n→∞

sn exists.

8. Let {xn} and {yn} be sequences of positive real numbers such that 0 < y1 ≤ x1 and

xn+1 =
xn + yn

2
and yn+1 =

2xnyn
xn + yn

for n = 1, 2, 3, · · · .

(a) Show that xn ≥ yn for all natural numbers n.

(b) Prove that {xn} is a monotonic decreasing sequence and {yn} is a monotonic increasing

sequence.

(c) Prove that {xn} and {yn} converge and lim
n→∞

xn = lim
n→∞

yn.

(d) Prove that xnyn is a constant and hence find lim
n→∞

xn in terms of x1 and y1.

2


